Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.478
Filtrar
1.
Ultrason Sonochem ; 105: 106865, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38564909

RESUMO

To further enhance the application of nobiletin (an important active ingredient in Citrus fruits), we used ultrasonic homogenization-assisted antisolvent precipitation to create ultrafine particles of nobiletin (UPN). DMSO was used as the solvent, and deionized water was used as the antisolvent. When ultrasonication (670 W) and homogenization (16000 r/min) were synergistic, the solution concentration was 57 mg/mL, and the minimum particle size of UPN was 521.02 nm. The UPN samples outperformed the RN samples in terms of the inhibition of porcine pancreatic lipase, which was inhibited (by 500 mg/mL) by 68.41 % in the raw sample, 90.34 % in the ultrafine sample, and 83.59 % in the positive control, according to the data. Fourier transform infrared spectroscopy analysis revealed no chemical changes in the samples before or after preparation. However, the crystallinity of the processed ultrafine nobiletin particles decreased. Thus, this work offers significant relevance for applications in the realm of food chemistry and indirectly illustrates the expanded application potential of nobiletin.


Assuntos
Flavonas , Lipase , Tamanho da Partícula , Solventes , Lipase/metabolismo , Lipase/antagonistas & inibidores , Animais , Flavonas/química , Flavonas/farmacologia , Suínos , Solventes/química , Pâncreas/enzimologia , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Sonicação , alfa-Glucosidases/metabolismo , Precipitação Química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química
2.
Nutrients ; 15(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38068799

RESUMO

Flavone glycosides, their aglycones, and metabolites are the major phytochemicals in dietary intake. However, there are still many unknowns about the cellular utilization and active sites of these natural products. Uridine diphosphate glucuronosyltransferases (UGTs) in the endoplasmic reticulum have gene polymorphism distribution in the population and widely mediate the absorption and metabolism of endogenous and exogenous compounds by catalyzing the covalent addition of glucuronic acid and various lipophilic chemicals. Firstly, we found that rutin, a typical flavone O-glycoside, has a stronger UGT2B7 binding effect than its metabolites. After testing a larger number of flavonoids with different aglycones, their aglycones, and metabolites, we demonstrated that typical dietary flavone O-glycosides generally have high binding affinities towards UGT2B7 protein, but the flavone C-glycosides and the phenolic acid metabolites of flavones had no significant effect on this. With the disposition of 4-methylumbelliferone examined by HPLC assay, we determined that 10 µM rutin and nicotifiorin could significantly inhibit the activity of recombinant UGT2B7 protein, which is stronger than isovitexin, vitexin, 3-hydroxyphenylacetic acid and 3,4-dihydroxyphenylacetic acid. In addition, in vitro experiments showed that in normal and doxorubicin-induced lipid composition, both flavone O-glycosides rutin and flavone C-glycosides isovitexin at 10 µM had no significant effect on the expression of UGT1A1, UGT2B4, UGT2B7, and UGT2B15 genes for 24 h exposure. The obtained results enrich the regulatory properties of dietary flavone glycosides, aglycones, and metabolites towards the catalysis of UGTs and will contribute to the establishment of a precise nutritional intervention system based on lipid bilayers and theories of nutrients on endoplasmic reticulum and mitochondria communication.


Assuntos
Flavonas , Glicosídeos , Humanos , Flavonas/química , Proteínas Recombinantes , Retículo Endoplasmático/metabolismo , Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo , Rutina , Catálise
3.
Eur J Med Res ; 28(1): 485, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932838

RESUMO

In recent years, the role of nobiletin in neuronal disorders has received extensive attention. However, the study of nobiletin in the peripheral nervous system is limited. Nobiletin, as a compound with high fat solubility, high bioavailability and low toxicity, has been extensively studied. Accumulating scientific evidence has shown that nobiletin has a variety of biological functions in the nervous system, such as inhibiting the expression of inflammatory factors, reducing the neurotoxic response, improving the antioxidant capacity, promoting the survival of nerve cells, promoting axon growth, reducing blood‒brain barrier permeability, reducing brain oedema, promoting cAMP response element binding protein expression, improving memory, and promoting mild depolarization of nerve cell mitochondria to improve antioxidative stress capacity. Accumulating studies have shown that nobiletin also protects enteric nervous system, spinal cord and sciatic nerve. To explore the new therapeutic potential of nobiletin in the nervous system, recent and relevant research progress is reviewed in this article. This will provide a new research idea for nobiletin in the nervous system.


Assuntos
Flavonas , Doenças do Sistema Nervoso Periférico , Humanos , Flavonas/química , Flavonas/farmacologia , Antioxidantes , Estresse Oxidativo
4.
Molecules ; 28(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37836680

RESUMO

Flavones are major compounds found in several parts of Oroxylum indicum (O. indicum). The quantification of multiple components by one marker (QAMS) method and the high-performance liquid chromatography (HPLC) method were developed for the quantitative analysis of extracts from the young fruits, green mature fruits, dry pod coats and seeds of O. indicum. Oroxin A, oroxin B and chrysin-7-O-glucuronide were identified in the O. indicum extracts. Oroxylin A and 5-hydroxymethylfurfural were isolated and structurally identified from the pod coat and young fruit extracts, respectively. From the HPLC analysis of the seven major flavones in the extracts, baicalin was the major compound in all extracts investigated (0.4-11% w/w of the extract). All flavone contents were low in the young fruit extract (<1% w/w of the extract). The green mature fruit and dry pod coat extracts showed similar constituent compositions. They contained small amounts of baicalin and oroxylin A, which were found only in these two extracts. Oroxylin A could be used as a marker to indicate the maturity of O. indicum fruits, while 5-hydroxymethylfurfural could be used as a marker for the young fruits. Baicalin was found to be a suitable single marker to calculate the contents of all flavones in the O. indicum extracts.


Assuntos
Bignoniaceae , Flavonas , Frutas/química , Extratos Vegetais/química , Cromatografia Líquida de Alta Pressão/métodos , Flavonas/química , Compostos Fitoquímicos , Bignoniaceae/química
5.
Cannabis Cannabinoid Res ; 8(6): 974-985, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37756221

RESUMO

Background: Throughout history, Cannabis has had a significant influence on human life as one of the earliest plants cultivated by humans. The plant was a source of fibers used by the oldest known civilizations. Cannabis was also used medicinally in China, India, and ancient Egypt. Delta-9-tetrahydrocannabinol (Δ9-THC), the main psychoactive compound in the plant was identified in 1964 followed by more than 125 cannabinoids. More than 30 flavonoids were isolated from the plant including the characteristic flavonoids called cannflavins, which are prenylated or geranylated flavones. Material and Methods: In this review, the methods of extraction, isolation, identification, biosynthesis, chemical synthesis, analysis and pharmacological activity of these flavonoids are described. Results: The biosynthetic routes of the cannflavins from phenylalanine and malonyl CoA as well as the microbial biotransformation are also discussed. Details of the chemical synthesis are illustrated as an alternative to the isolation from the plant materials along with other possible sources of obtaining cannflavins. Detailed methods discussing the analysis of flavonoids in cannabis are presented, including the techniques used for separation and detection. Finally, the various biological activities of cannflavins are reviewed along with the available molecular docking studies. Conclusion: Despite the low level of cannflavins in cannabis hamper their development as naturally derived products, efforts need to be put in place to develop high yield synthetic or biosynthetic protocols for their production in order for their development as pharmaceutical products.


Assuntos
Cannabis , Flavonas , Alucinógenos , Humanos , Cannabis/química , Simulação de Acoplamento Molecular , Flavonas/química , Flavonas/metabolismo , Flavonoides/farmacologia , Flavonoides/metabolismo , Agonistas de Receptores de Canabinoides
6.
Molecules ; 28(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37375147

RESUMO

Nobiletin is a natural product with multiple physiological activities and is the main ingredient of Pericarpium Citri Reticulatae. We successfully discovered that nobiletin exhibits aggregation induced emission enhancement (AIEE) properties and it has significant advantages such as a large Stokes shift, good stability and excellent biocompatibility. The increase in methoxy groups endows nobiletin a greater fat-solubility, bioavailability and transport rate than the corresponding unmethoxylated flavones. Ulteriorly, cells and zebrafish were used to explore the application of nobiletin in biological imaging. It emits fluorescence in cells and is specifically targeted at mitochondria. Moreover, it has a noteworthy affinity for the digestive system and liver of zebrafish. Due to the unique AIEE phenomenon and stable optical properties of nobiletin, it paves the way for discovering, modifying and synthesizing more molecules with AIEE characteristics. Furthermore, it has a great prospect with regard to imaging cells and cellular substructures, such as mitochondria, which play crucial roles in cell metabolism and death. Indeed, three-dimensional real-time imaging in zebrafish provides a dynamic and visual tool for studying the absorption, distribution, metabolism and excretion of drugs. In this article, more directions and inspiration can be presented for the exploration of non-invasive pharmacokinetic research and intuitive drug pathways or mechanisms.


Assuntos
Flavonas , Peixe-Zebra , Animais , Flavonas/química , Mitocôndrias
7.
Int J Mol Sci ; 24(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37298192

RESUMO

Cancer is a widespread but dangerous disease that can strike anyone and is the second 1leading cause of death worldwide. Prostate cancer, in particular, is a prevalent cancer that occurs in men, and much research is being done on its treatment. Although chemical drugs are effective, they have various side effects, and accordingly, anticancer drugs using natural products are emerging. To date, many natural candidates have been discovered, and new drugs are being developed as drugs to treat prostate cancer. Representative candidate compounds that have been studied to be effective in prostate cancer include apigenin, acacetin and tangeretin of the flavone family among flavonoids. In this review, we look at the effects of these three flavones on prostate cancer cells via apoptosis in vitro and in vivo. Furthermore, in addition to the existing drugs, we suggest the three flavones and their effectiveness as natural anticancer agents, a treatment model for prostate cancer.


Assuntos
Antineoplásicos , Flavonas , Neoplasias da Próstata , Masculino , Humanos , Flavonas/farmacologia , Flavonas/química , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Apoptose , Apigenina/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico
8.
Molecules ; 28(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36985836

RESUMO

Flavones such as 7,8-dihydroxyflavone (tropoflavin), 5,6,7-trihydroxyflavone (baicalein), 3',4',5,6-tetrahydroxyflavone (luteolin), 3,3',4',5,5',7-hexahydroxyflavone (myricetin), 4',5,7-trihydroxyflavone (apigenin), and 5,7-dihydroxyflavone (chrysin) are important both for their presence in natural products and for their pharmacological applications. However, due to their chemical characteristics and their metabolic processes, they have low solubility and low bioavailability. Knowledge about the physicochemical properties of nanocarriers and the possible mechanisms of covalent and non-covalent interaction between nanoparticles (NPs) and drugs is essential for the design of nanocarriers to improve the bioavailability of molecules with pharmacological potential, such as tropoflavin, baicalein, luteolin, myricetin, apigenin, and chrysin. The parameters of characterization of some NPs of these flavones, such as size, polydispersity index (PDI), zeta potential, encapsulation efficiency (EE), and % release/time, utilized in biomedical applications and the covalent and non-covalent interactions existing between the polymeric NPs and the drug were analyzed. Similarly, the presence of functional groups in the functionalized carbon nanotubes (CNTs), as well as the effect of pH on the % adsorption of flavonoids on functionalized multi-walled carbon nanotubes (MWCNT-COOH), were analyzed. Non-covalent interaction mechanisms between polymeric NPs and flavones, and covalent interaction mechanisms that could exist between the NPs and the amino and hydroxyl functional groups, are proposed.


Assuntos
Flavonas , Nanotubos de Carbono , Flavonas/química , Apigenina/química , Luteolina/química , Flavonoides/química
9.
Bioorg Chem ; 133: 106405, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36753966

RESUMO

Previously we discovered a novel natural scaffold compound, isobavachin (4', 7-dihydroxy-8-prenylflavanone), as a potent URAT1 inhibitor by shape and structure based on a virtue screening approach. In this study, further urate-lowering mechanism, pharmacokinetics and toxicities of isobavachin were conducted. Isobavachin inhibited URAT1 with an IC50 value of 0.24 ± 0.06 µM, and residues S35, F365, I481 and R477 of URAT1 contributed to high affinity for isobavachin. Isobavachin also inhibited glucose transporter 9 (GLUT9), another pivotal urate reabsorption transporter, with an IC50 value of 1.12 ± 0.26 µM. Molecular docking and MMGBSA results indicated that isobavachin might compete residues R171, L75 and N333 with uric acid, which leads to inhibition of uric acid transport of GLUT9. Isobavachin weakly inhibited urate secretion transporters OAT1 with an IC50 value of 4.38 ± 1.27 µM, OAT3 with an IC50 of 3.64 ± 0.62 µM, and ABCG2 with an IC50 of 10.45 ± 2.17 µM. Isobavachin also inhibited xanthine oxidase (XOD) activity in vitro with an IC50 value of 14.43 ± 3.56 µM, and inhibited the hepatic XOD activities at 5-20 mg/kg in vivo. Docking and MMGBSA analysis indicated that isobavachin might bind to the Mo-Pt catalyze center of XOD, which leads to inhibition of uric acid production. In vivo, isobavachin exhibited powerful urate-lowering and uricosuric effects at 5-20 mg/kg compared with the positive drugs morin (20 mg/kg) and RDEA3170 (10 mg/kg). Safety assessments revealed that isobavachin was safe and had no obvious toxicities. Isobavachin has little cell toxicity in HK2 cells as indicated by the MTT assay. In vivo, after treatment with 50 mg/kg isobavachin for 14 days, isobavachin had little renal toxicity, as revealed by serum CR/BUN levels, and no hepatotoxicity as revealed by ALT/AST levels. Further HE examination also suggests that isobavachin has no obvious kidney/liver damage. A pharmacokinetic study in SD rats indicated isobavachin had lower bioavailability (12.84 ± 5.13 %) but long half-time (7.04 ± 2.68 h) to maintain a continuous plasma concentration. Collectively, these results indicate that isobavachin deserves further investigation as a candidate anti-hyperuricemic drug with a novel mechanism of action: selective urate reabsorption inhibitor (URAT1/GLUT9) with a moderate inhibitory effect on XOD.


Assuntos
Flavonas , Ácido Úrico , Xantina Oxidase , Animais , Ratos , Rim/efeitos dos fármacos , Rim/metabolismo , Simulação de Acoplamento Molecular , Ratos Sprague-Dawley , Ácido Úrico/metabolismo , Xantina Oxidase/antagonistas & inibidores , Flavonas/química , Flavonas/farmacologia
10.
Phytochemistry ; 209: 113615, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36828100

RESUMO

Scutellaria scordiifolia Fisch. ex Schrank is used to treat various inflammatory diseases and other ailments in traditional and contemporary medicine. In this study, 10 undescribed compounds, including a flavanone (1), four chrysin C-glycosides (2-5), a phenanthrene glucoside (6), four iridoid glucosides (7-10) and 31 known compounds were identified from an extract of the aerial parts of S. scordiifolia. The absolute configurations of sugars in C-glycosides were determined by comparing electric circular dichroism spectra with calculated data. The flavanones (1 and 17), flavonols (11-13), flavone (14), and some of the flavone glucuronides (15, 16) exhibited trypanocidal activities against Trypanosoma congolense. The activity data and quantitative HPLC analysis of flavonoids from the aerial parts of S. scordiifolia suggest that they may effectively treat diseases caused by the aforementioned trypanosomes. Other compounds such as novel iridoids and phenanthrene glycosides, which may be useful for chemophenetic and chemoecological discussions, were also identified.


Assuntos
Flavonas , Scutellaria , Scutellaria/química , Glicosídeos/farmacologia , Glicosídeos/química , Flavonas/farmacologia , Flavonas/química , Glucosídeos/química , Iridoides/química , Compostos Fitoquímicos/farmacologia
11.
Sci Rep ; 12(1): 21646, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36517573

RESUMO

Flavone has recently been proved as a promising scaffold for the development of a novel drug against dengue fever, one of the major health threats globally. However, the structure-activity relationship study of flavones on the anti-dengue activity remains mostly limited to the natural-occuring analogs. Herein, 27 flavone analogs were successfully synthesized, of which 5 analogs (5e, 5h, 5o, 5q, and 5r) were novel. In total, 33 analogs bearing a diverse range of substituents were evaluated for their efficacy against DENV2-infected LLC/MK2 cells. The introduction of electron-withdrawing groups on ring B such as Br (5m) or NO2 (5n and 5q) enhanced the activity significantly. In particular, the tri-ester 5d and di-ester 5e exhibited low toxicity against normal cell, and exceptional DENV2 inhibition with the EC50 as low as 70 and 68 nM, respectively, which is over 300-fold more active compared to the original baicalein reference. The viral targets for these potent flavone analogs were predicted to be NS5 MTase and NS5 RdRp, as suggested by the likelihood ratios from the molecular docking study. The great binding interaction energy of 8-bromobaicalein (5f) confirms the anti-dengue activity at atomistic level. The physicochemical property of all the synthetic flavone analogs in this study were predicted to be within the acceptable range. Moreover, the QSAR model showed the strong correlation between the anti-dengue activity and the selected molecular descriptors. This study emphasizes the great potential of flavone as a core structure for further development as a novel anti-dengue agent in the future.


Assuntos
Flavonas , Simulação de Acoplamento Molecular , Flavonas/química , Relação Estrutura-Atividade , Ésteres
12.
Int J Mol Sci ; 23(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36362072

RESUMO

A kind of hydroxylated polymethoxyflavone (PMFs) existing in the citrus genus, 5-Demethyltangeretin (5-DTAN), has been reported to possess several bioactivities in vitro and in vivo. The aim of this study was to investigate whether acetylation could enhance the anticancer activity and oral bioavailability of 5-DTAN. PC-3 human prostate cancer cells were treated with tangeretin (TAN), 5-DTAN, and 5-acetylated TAN (5-ATAN), and the results showed that the cytotoxic effect 5-ATAN (IC50 value of 5.1 µM) on the cell viability of PC-3 cells was stronger than that of TAN (IC50 value of 17.2 µM) and 5-DTAN (IC50 value of 11.8 µM). Compared to 5-DTAN, 5-ATAN treatment caused a more pronounced DNA ladder, increased the sub-G1 phase population, and induced G2/M phase arrest in the cell cycle of PC-3 cells. We also found that 5-ATAN triggered the activation of caspase-3 and the progression of the intrinsic mitochondrial pathway in PC-3 cells, suggesting the induction of apoptosis. In a cell wound healing test, 5-ATAN dose-dependently reduced the cell migration, and the expression of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) was decreased after 48 h of 5-ATAN treatment. Moreover, oral administration of 5-ATAN showed a significantly stronger inhibitory effect on tumor size and tumor weight in tumor-bearing nude mice than those of vehicle or the 5-DTAN group (p < 0.05). Furthermore, pharmacokinetic results showed that single-dose oral administration of 5-ATAN exhibited a higher maximum concentration (Cmax) and area under the curve (AUC) of 5-DTAN in plasma than that of 5-DTAN. More extensive distribution of 5-DTAN to most tissues of mice was also observed in mice treated with 5-ATAN for 7 days. In conclusion, acetylation strongly enhances the anticancer activity and oral bioavailability of 5-DTAN and could be a promising strategy to promote the potential bioactivities of natural products.


Assuntos
Antineoplásicos , Flavonas , Animais , Humanos , Masculino , Camundongos , Acetilação , Apoptose , Disponibilidade Biológica , Linhagem Celular Tumoral , Metaloproteinase 2 da Matriz , Camundongos Nus , Flavonas/química , Flavonas/farmacocinética , Antineoplásicos/química , Antineoplásicos/farmacocinética
13.
Int J Mol Sci ; 23(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36430695

RESUMO

Phenolic plant constituents are well known for their health-promoting and cancer chemopreventive properties, and products containing such constituents are therefore readily consumed. In the present work, we isolated 13 phenolic constituents of four different compound classes from the aerial parts of the Moldavian dragonhead, an aromatic and medicinal plant with a high diversity on secondary metabolites. All compounds were tested for their apoptotic effect on myeloma (KMS-12-PE) and AML (Molm-13) cells, with the highest activity observed for the flavone and flavonol derivatives. While diosmetin (6) exhibited the most pronounced effects on the myeloma cell line, two polymethylated flavones, namely cirsimaritin (1) and xanthomicrol (3), were particularly active against AML cells and therefore subsequently investigated for their antiproliferative effects at lower concentrations. At a concentration of 2.5 µM, cirsimaritin (1) reduced proliferation of Molm-13 cells by 72% while xanthomicrol (3) even inhibited proliferation to the extent of 84% of control. In addition, both compounds were identified as potent FLT3 inhibitors and thus display promising lead structures for further drug development. Moreover, our results confirmed the chemopreventive properties of flavonoids in general, and in particular of polymethylated flavones, which have been intensively investigated especially over the last decade.


Assuntos
Flavonas , Lamiaceae , Leucemia Mieloide Aguda , Lignanas , Mieloma Múltiplo , Flavonóis/farmacologia , Flavonóis/química , Mieloma Múltiplo/tratamento farmacológico , Linhagem Celular Tumoral , Flavonas/farmacologia , Flavonas/química , Lamiaceae/química , Leucemia Mieloide Aguda/tratamento farmacológico , Fenóis
14.
Food Funct ; 13(19): 9832-9846, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36047466

RESUMO

Celery seeds are commonly used as condiments and in herbal teas with high medicinal value. In the present study, we investigated the contents of extracts derived under different extraction conditions and determined the optimal conditions for only extracting flavone glycosides from celery seeds. The compositional analysis identified three primary flavone glycosides in the ethanolic extract, and apiin, graveobioside A, and graveobioside B were isolated. Apigenin, luteolin, and chrsyeriol were obtained by the acid hydrolysis of flavone glycosides under high-temperature conditions. Here we investigated the inhibitory activity of apigenin and apiin on xanthine oxidase by reducing the rate of oxidative cytochrome C and found that both apigenin and apiin reduced cytochrome C production, except for low concentrations of apiin. In vivo analysis with hyperuricemia mice and rats showed that apiin had excellent uric acid-lowering effects and high dose-dependence, while apigenin was relatively slightly uric acid-lowering. In addition, the flavone glycoside extracts from celery seeds exhibited similar effects of reducing uric acid with apiin. Surprisingly, in hyperuricemia rats, the uric acid-lowering effects of high-dose apiin and flavone glycoside extracts were almost comparable to that of allopurinol. Besides, our experimental results showed that apigenin could improve uric acid clearance by increasing the glomerular filtration capacity, which was reflected in reducing the renal function parameters SUN and SCr; also, apiin showed better results. This study also showed that celery seeds have a unique medicinal value in treating hyperuricemia and that the flavone glycoside extracts from celery seeds can be developed as medicine for hyperuricemia.


Assuntos
Apium , Flavonas , Hiperuricemia , Chás de Ervas , Alopurinol/análise , Alopurinol/farmacologia , Alopurinol/uso terapêutico , Animais , Apigenina/análise , Apium/química , Citocromos c , Flavonas/química , Glicosídeos/química , Hiperuricemia/tratamento farmacológico , Luteolina/análise , Camundongos , Extratos Vegetais/química , Ratos , Sementes/química , Chás de Ervas/análise , Ácido Úrico , Xantina Oxidase
15.
Phytochemistry ; 203: 113387, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36055427

RESUMO

The molecular and electronic structure of parent flavone and 49 (poly)methoxylated flavones (P)MFs were studied theoretically. Selected group of flavonoids consists of compounds naturally occurring in citrus plants or synthetic derivatives of flavone. These compounds exhibit several bioactivities in vitro and in vivo and can protect plants from solar ultraviolet (UV) radiation. Substitution induced structural changes in (P)MFs were correlated with published experimental values of P-glycoprotein inhibition effect. We have demonstrated that the C5-C10 bond length of 1-benzopyran-4-one moiety represents a suitable structural descriptor for this bioactivity. Obtained linear equations for the compounds with substituted and non-substituted C3 position enable the prediction of the potential anti-cancer chemo-preventive effect of the rest of studied (P)MFs. Consequently, potentially more effective substances were suggested. Optical properties of (P)MFs and their relationship with the molecular structure was examined in detail for methanol environment, as well. The multiple linear regression model was applied to assess the correlation between experimental absorption and fluorescence wavelengths with the theoretically predicted ones. The UV photo-protective potential of studied derivatives was estimated from the calculated optical properties.


Assuntos
Citrus , Flavonas , Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Flavonas/química , Flavonas/farmacologia , Flavonoides/química , Flavonoides/farmacologia , Metanol
16.
Steroids ; 187: 109099, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35970223

RESUMO

Structural modification of the phenolic A-ring of estrogens at C-2 and/or C-3 significantly reduces or eliminates the hormonal effects of the compounds, thus the incorporation of other pharmacophores into these positions can provide biologically active derivatives suitable for new indications, without possessing unwanted side effects. As part of this work, A-ring integration of estradiol with chalcones and flavones was carried out in the hope of obtaining novel molecular hybrids with anticancer action. The syntheses were performed from 2-acetylestradiol-17ß-acetate which was first reacted with various (hetero)aromatic aldehydes in a pyrrolidine-catalyzed reaction in DMSO. The chalcones thus obtained were then subjected to oxidative cyclization with I2 in DMSO to afford estradiol-flavone hybrids in good yields. All newly synthesized derivatives were tested in vitro for cytotoxicity on human malignant cell lines of diverse origins as well as on a non-cancerous cell line, and the results demonstrated that estradiol-flavone hybrids containing a structure-integrated flavone moiety were the most active and cancer cell-selective agents. The minimal inhibitory concentration values (IC50) were calculated for selected compounds (3c, 3d and 3e) and their apoptosis inducing capacity was verified by RT-qPCR (real-time quantitative polymerase chain reaction). The results suggest an important structure-activity relationship regarding estradiol-flavone hybrids that could form a promising synthetic platform and rationale for future drug developments.


Assuntos
Antineoplásicos , Chalcona , Chalconas , Flavonas , Aldeídos , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Chalcona/química , Chalcona/farmacologia , Chalconas/química , Dimetil Sulfóxido/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Estradiol/farmacologia , Estrogênios/farmacologia , Flavonas/química , Flavonas/farmacologia , Humanos , Estrutura Molecular , Pirrolidinas , Relação Estrutura-Atividade
17.
Plant Physiol ; 190(4): 2122-2136, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-35947689

RESUMO

Linarin (acacetin-7-O-rutinoside), isorhoifolin (apigenin-7-O-rutinoside), and diosmin (diosmetin-7-O-rutinoside) are chemically and structurally similar flavone rutinoside (FR) compounds found in Chrysanthemum L. (Anthemideae, Asteraceae) plants. However, their biosynthetic pathways remain largely unknown. In this study, we cloned and compared FRs and genes encoding rhamnosyltransferases (RhaTs) among eight accessions of Chrysanthemum polyploids. We also biochemically characterized RhaTs of Chrysanthemum plants and Citrus (Citrus sinensis and Citrus maxima). RhaTs from these two genera are substrate-promiscuous enzymes catalyzing the rhamnosylation of flavones, flavanones, and flavonols. Substrate specificity analysis revealed that Chrysanthemum 1,6RhaTs preferred flavone glucosides (e.g. acacetin-7-O-glucoside), whereas Cs1,6RhaT preferred flavanone glucosides. The nonsynonymous substitutions of RhaTs found in some cytotypes of diploids resulted in the loss of catalytic function. Phylogenetic analysis and specialized pathways responsible for the biosynthesis of major flavonoids in Chrysanthemum and Citrus revealed that rhamnosylation activity might share a common evolutionary origin. Overexpression of RhaT in hairy roots resulted in 13-, 2-, and 5-fold increases in linarin, isorhoifolin, and diosmin contents, respectively, indicating that RhaT is mainly involved in the biosynthesis of linarin. Our findings not only suggest that the substrate promiscuity of RhaTs contributes to the diversity of FRs in Chrysanthemum species but also shed light on the evolution of flavone and flavanone rutinosides in distant taxa.


Assuntos
Chrysanthemum , Citrus , Diosmina , Flavonas , Chrysanthemum/genética , Chrysanthemum/química , Filogenia , Flavonoides , Flavonas/química , Glucosídeos/química
18.
J Nat Prod ; 85(8): 1904-1911, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35876856

RESUMO

Flavonoids acylated on their core phenolic groups are rare. The Aotearoa New Zealand endemic alpine daisy Celmisia viscosa is widespread, but its flavonoids have not previously been identified. Leaf extracts yielded a series of 8-O-acylated flavones with combinations of 3-methylbutanoate, 2-methylbutanoate, and 2-methylpropanoate groups and one, two, or three O-methyls, all previously unreported. Regiochemistries of 8-(3″-methylbutanoyl)-5-hydroxy-6,7,4'-trimethoxyflavone (5) and 8-(2″-methylbutanoyl)-5,7,4'-trihydroxy-6-methoxyflavone (10) were defined by X-ray crystallography. LC analyses of leaf extracts from the full geographic range of C. viscosa showed intraspecific variation of these flavones: most had high concentrations of trimethoxy 8-O-acylated flavones, but dimethoxy 8-O-acylated flavones were the most abundant flavonoids in two individuals. Three other viscid (sticky leaved) Celmisa species also contained these rare flavones, but four nonviscid Celmisa had none detectable.


Assuntos
Flavonas , Flavonas/química , Flavonoides/química , Humanos , Nova Zelândia
19.
Enzyme Microb Technol ; 160: 110101, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35872507

RESUMO

C-glycosylated flavonoids are important structural derivatives of flavonoids and have a variety of physiological activities. Flavone synthase is a key enzyme for producing C-glycosylated flavonoids. In this study, three flavone synthase genes were cloned, overexpressed and characterized in E. coli. By analyzing the enzymatic properties of the enzymes, Aethusa cynapium flavone synthase (AcFNS) was better than Apium graveolens flavone synthase (AgFNS) and Petroselinum crispum flavone synthase (PcFNS) in terms of catalytic ability, organic solvent tolerance and stability. Then, a one-pot enzymatic cascade was developed to synthesize vitexin from naringenin by using AcFNS, C-glycosyltransferase (TcCGT) from Trollius chinensis, and sucrose synthase (GmSUS) from Glycine max. The effects of enzyme ratios, substrate concentrations, cofactors, and reaction conditions on vitexin production were determined. The highest vitexin production reached 935.6 mg/L with a corresponding molar conversion of 78.7 % for (2 S)-naringenin. Thus, this is the first report of a one-pot enzymatic cascade for vitexin production from naringenin in vitro.


Assuntos
Escherichia coli , Flavonas , Apigenina , Escherichia coli/genética , Flavanonas , Flavonas/química , Flavonoides
20.
Molecules ; 27(15)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35897938

RESUMO

Antiangiogenic agents attenuate tumours' growth and metastases and are therefore beneficial as an adjuvant or standalone cancer regimen. Drugs with dual antiproliferative and antiangiogenic activities can achieve anticancer efficacy and overcome acquired resistance. In this study, synthetic flavones (5a,b) with reported anticancer activity, and derivatives (4b and 6a), exhibited significant inhibition of endothelial cell tube formation (40-55%, 12 h) at 1 µM, which is comparable to sunitinib (50% inhibition at 1 µM, 48 h). Flavones (4b, 5a,b and 6a) also showed 25-37% reduction in HUVECs migration at 10 µM. In a Western blotting assay, 5a and 5b subdued VEGFR2 phosphorylation by 37% and 57%, respectively, suggesting that VEGFR2 may be their main antiangiogenic target. 5b displayed the best docking fit with VEGFR2 in an in silico study, followed by 5a, emphasizing the importance of the 7-hydroxyl group accompanied by a 4-C=S for activity. Conversely, derivatives with a 4-carbonyl moiety fitted poorly into the target's binding pocket, suggesting that their antiangiogenic activity depends on a different target. This study provides valuable insight into the Structure Activity Relationships (SAR) and modes of action of halogenated flavones with VEGFR2 and highlights their therapeutic potential as antiangiogenic/anticancer lead compounds.


Assuntos
Antineoplásicos , Flavonas , Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacologia , Antineoplásicos/farmacologia , Proliferação de Células , Células Endoteliais/metabolismo , Flavonas/química , Flavonas/farmacologia , Flavonoides/farmacologia , Fosforilação , Receptor 2 de Fatores de Crescimento do Endotélio Vascular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA